3.504 \(\int \frac{\sqrt{\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=137 \[ -\frac{(5 A-2 B) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 a^2 d}+\frac{(4 A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(5 A-2 B) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a^2 d (\cos (c+d x)+1)}-\frac{(A-B) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

((4*A - B)*EllipticE[(c + d*x)/2, 2])/(a^2*d) - ((5*A - 2*B)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - ((5*A - 2*
B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A - B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(
3*d*(a + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.374605, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {2954, 2977, 2748, 2641, 2639} \[ -\frac{(5 A-2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{(4 A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(5 A-2 B) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a^2 d (\cos (c+d x)+1)}-\frac{(A-B) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]

[Out]

((4*A - B)*EllipticE[(c + d*x)/2, 2])/(a^2*d) - ((5*A - 2*B)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - ((5*A - 2*
B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A - B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(
3*d*(a + a*Cos[c + d*x])^2)

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx &=\int \frac{\cos ^{\frac{3}{2}}(c+d x) (B+A \cos (c+d x))}{(a+a \cos (c+d x))^2} \, dx\\ &=-\frac{(A-B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{\sqrt{\cos (c+d x)} \left (-\frac{3}{2} a (A-B)+\frac{1}{2} a (7 A-B) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac{(5 A-2 B) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A-B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{-\frac{1}{2} a^2 (5 A-2 B)+\frac{3}{2} a^2 (4 A-B) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{3 a^4}\\ &=-\frac{(5 A-2 B) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A-B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{(5 A-2 B) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a^2}+\frac{(4 A-B) \int \sqrt{\cos (c+d x)} \, dx}{2 a^2}\\ &=\frac{(4 A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(5 A-2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{(5 A-2 B) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A-B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 6.6319, size = 1318, normalized size = 9.62 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]

[Out]

((2*I)*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x])*((2*E^((2*I)*d*x)*Hypergeome
tric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1
+ E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 +
 E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*
x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*
Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((
2*I)*d*x))*Sin[c])))/((B + A*Cos[c + d*x])*(a + a*Sec[c + d*x])^2) - ((I/2)*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Se
c[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x])*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(C
os[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[
1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*
I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E
^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2
*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((B + A*Cos[c + d*x]
)*(a + a*Sec[c + d*x])^2) + (10*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x -
 ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - Ar
cTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]
])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) - (4*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*H
ypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x])*Se
c[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[
Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*
x])^2) + (Cos[c/2 + (d*x)/2]^4*(A + B*Sec[c + d*x])*((-4*(2*A - B + 2*A*Cos[c])*Csc[c])/d + (4*Sec[c/2]*Sec[c/
2 + (d*x)/2]*(-2*A*Sin[(d*x)/2] + B*Sin[(d*x)/2]))/d - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(-(A*Sin[(d*x)/2]) + B
*Sin[(d*x)/2]))/(3*d) - (2*(-A + B)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/(Sqrt[Cos[c + d*x]]*(B + A*Cos[c +
d*x])*(a + a*Sec[c + d*x])^2)

________________________________________________________________________________________

Maple [B]  time = 1.839, size = 421, normalized size = 3.1 \begin{align*}{\frac{1}{6\,d{a}^{2}}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 24\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+10\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+24\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -12\,B \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-4\,B\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}-6\,B \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -38\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+20\,B \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+15\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-9\,B \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-A+B \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*A*cos(1/2*d*x+1/2*c)^6+10*A*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+24*A*c
os(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2))-12*B*cos(1/2*d*x+1/2*c)^6-4*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipt
icF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-6*B*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2
*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-38*A*cos(1/2*d*x+1/2*c)^4+20*B*cos(1/2*d*
x+1/2*c)^4+15*A*cos(1/2*d*x+1/2*c)^2-9*B*cos(1/2*d*x+1/2*c)^2-A+B)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} \sec \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a^2*sec(d*x + c)^2 + 2*a^2*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A \sqrt{\cos{\left (c + d x \right )}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec{\left (c + d x \right )} + 1}\, dx + \int \frac{B \sqrt{\cos{\left (c + d x \right )}} \sec{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec{\left (c + d x \right )} + 1}\, dx}{a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**2,x)

[Out]

(Integral(A*sqrt(cos(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) + Integral(B*sqrt(cos(c + d*x))*sec(
c + d*x)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x))/a**2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a)^2, x)